Numerical Modeling of Firebrand Transport
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Introduction Large-scale Transport

Wildfire ember attacks, also known as firebrand showers, are the fastest and most complex form
of wildfire spread. This project seeks to answer what aspects of turbulence affect firebrand landing
distribution. The hypothesis is that turbulence intensity affects firebrand landing distribution.

The firebrand transport code was coupled with wildfire simulation software WRF-SFIRE to simu-
late transport in large-scale domains. Firebrands were simulated in high velocity/low fluctuation
(Manning Creek) and low velocity/high fluctuation (Creek Fire) wildfire simulations.

The following work uses a firebrand particle dynamics solver to calculate transport in a turbulent
boundary layer at various turbulence intensities. Velocity data of a high-fidelity computational
fluid dynamics solver is used for small-scale turbulence and WRF-SFIRE (wildfire simulation) for
large-scale wildfire turbulence at various wind speeds.
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small-scale turbulence on firebrand transport.
CFD simulations of 4% and /% turbulence
Intensities were created for experimental test
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Figure 2. Validation of LES results with experimental data

from Tohidi et. al. [4]. Ca=Es. = Plates have higher travel distances at /% turbulence intensities, and rods have slightly
higher travel distances at 4%
Small-scale Transport = Firebrand shape Is significant because of their different aerodynamic drag forces

Conclusions

= The turbulence intensity affects the landing distribution of firebrands

A series of 32 tests
were conducted
for plate and rod
firebrands to
compare transport
in 4% and /%
turbulence
intensity,
instantaneous and
time-averaged
velocity fields, and
at 4 different
release heights.

= 1000 particles

= Release location
(X,Y,Z):
2.5,1.5,0.25 —
1.7 m

= Release angle:
BQO ~ U(O, 27T)
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Figure 4. Plates trajectories, fixed size: [, = 3 mm,
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The presence of turbulence leads to shorter travel distances, time-averaged velocity fields
with no fluctuations overpredict the travel distance
Firebrands in large-scale domains have greater travel distances in low wind-speed wildfires
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Figure 5. Rods trajectories, fixed size: I, = 3 mm, I, = 5 mm, [, = 25 mm
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